
Overlapping Partial Trips for
Car-Sharing applications

Sascha Feldmann

Matrikel-Nr. 547307

I N D E P E N D E N T C O U R S E W O R K S

eingereicht am
Masterstudiengang

Internationale Medieninformatik (Master)

an der Hochschule für Technik und Wirtschaft, Berlin

im August 2015

Declaration

I hereby declare and confirm that this coursework is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hochschule für Technik und Wirtschaft, Berlin, August 28, 2015

Sascha Feldmann

i

Contents

Declaration i

1 Introduction 1

2 Current State 3
2.1 User Experience . 3

2.1.1 Offering a trip . 3
2.1.2 Searching for trips . 4

2.2 Algorithm . 5
2.3 Complexity . 5
2.4 Architecture . 5
2.5 Goals of this work . 6

3 Fundamentals 7
3.1 Haversine formula . 7
3.2 Java enterprise platform . 8
3.3 Hibernate . 8
3.4 JSF . 9

3.4.1 Facelets . 9
3.4.2 Request-Response Lifecycle 10

3.5 Basic graph theory . 10
3.5.1 Definition . 10
3.5.2 Storage of graphs . 12

3.6 Shortest Path . 13
3.6.1 Comparison . 13
3.6.2 Dijkstra . 14

3.7 K-Shortest Path . 14
3.7.1 Partial overlap proposal 14
3.7.2 Path overlap in road network 15

3.8 Summary . 15

4 Concept 16
4.1 Requirements . 16

4.1.1 Functional requirements 16

ii

Contents iii

4.1.2 Technical requirements 17
4.2 Technical process . 17

4.2.1 Extension in existing trip query service 17
4.2.2 Graph structure . 18
4.2.3 Frontend extensions 20

4.3 Summary . 20

5 Implementation 21
5.1 Graph implementation . 21
5.2 Selecting trips . 22
5.3 Structuring process . 22
5.4 Intersection probability . 23
5.5 Changes in modelling . 24
5.6 Shortest Path strategy . 24
5.7 Dijkstra implementation . 25
5.8 Integration into current service 26
5.9 Frontend adjustments . 27
5.10 Review . 28

6 Analysis 29
6.1 Results . 29
6.2 Usability weaknesses . 29
6.3 Runtime . 31
6.4 Complexity . 32

7 Conclusion 33
7.1 Review . 33
7.2 Outlook . 34

Lists 35

List of abbreviations 39

Chapter 1

Introduction

The context of this work is an existing Car-Sharing application which was
developed by Martin Schultz and the author during their bachelor pro-
gram at Beuth Hochschule für Technik, Berlin. The existing application
was originally developed in 2013 as multi-tier web application using PHP
Zend Framework 2. In 2014/15, the author decided to develop a completely
new J2EE-based web application together with Marco Seidler.

The application allows car owners to offer trips for potential passengers.
Therefore, the driver has to configure the trip she/he’s planning for some
date and time. She/He needs to configure the exact route she/he plans to
follow using a dynamic map which is the central interaction element. The
driver is asked to define an overall price for the whole trip which mostly
includes prices for gas and wastage of her/his configured vehicle. Passengers
can find matching trips by a map-based search engine that evaluates the
coordinates of the passenger’s start and end location against all the trip
paths that take place in her/his prefered date range. The system will present
a calculated price based on the overall price that the driver entered. It takes
care of the distance of the passenger’s partial trip. The underlying algorithm
will be explained more detailed in chapter 2.

So, the current application covers the following use case: a passenger
wants to get from Hannover to Cologne. She / he enters her / his prefered
travel time, the maximum distance that she / he is able to travel by her
or himself to get to the meeting points and the system matches a passing
trip from Berlin to Bonn. This trip is close enough to the passenger’s start
and end locations. The final meeting locations have to be clarified by infor-
mal communication between both driver and passenger. Thus, the current
application already offers algorithms to find partial trips on single routes
offered by drivers. Compared to other Car-Sharing platforms, this capabil-
ity appears to be an overvalue because most platforms require driver and
passenger to have exactly the same start and end location or at least an
explicitly defined waypoint.

1

1. Introduction 2

The current application therefore allows to load cars more efficiently in
the sense of ecologies and economics. The goal of this work is to extend
the existing algorithms to find partial trips that overlap multiple routes of
different drivers. Following the example above, the passenger would be able
to find an intersection: he could take a trip from Hannover to Düsseldorf, for
example, where another driver offers a trip to Frankfurt by passing Cologne.

An overlapping partial trip algorithm could increase the efficiency of
loading cars. On the other hand, it could increase the mobility of users who
need to get from certain start to another end location. Thinking of the close-
meshed road network of Europe this would also simplify the passenger’s
search because she/he doesn’t need to try out a couple of start and end
points in order to find a matching trip.

In chapter 3, the technology requirements and potential algorithms that
are mostly based on graph concepts are discussed. At the end, those are
compared by their complexitiy and applicability on the stated problem.

The results are an input for the final concept that is presented in chapter
4. Based on this, a working solution was implemented. The implementation
is described in 5. It is demonstrated by screenshots of the extended web
application in chapter 6.

The found solution needs to be discussed in matters of performance in
real-time web applications. Chapter 6 therefore collects several measure-
ments of the developed algorithm runtimes and complexity.

In the final chapter 7 the solution will be reviewed. It is therefore dis-
cussed whether the algorithm produced the expected results in an optimal
runtime. Also, possible alternative solutions that were briefly introduced
during the research are discussed.

In summary it can be said that the algorithm of finding overlapping
partial trips are an overvalue within the problem domain of Car-Sharing
applications. But one could also think of applying the solution on any other
traffic network problem - such as public transport or forwarding companies.

The source code of the application is open and can be found on Github
1. Since the submission of this coursework, the source codes were written by
Sascha Feldmann and Marco Seidler only. All extensions within the scope
of this coursework were done by Sascha Feldmann only.

1https://github.com/sasfeld/JumpUpReloaded

Chapter 2

Current State

In this chapter the current state of the car sharing application will be ex-
plained. First, the application will be introduced from the user’s perspective.
Then, the application’s architecture will be sketched shortly. Afterwards, the
current founding algorithm to find partial trips by one driver will be pre-
sented. Finally, the current solution will be concluded to the extension to
find overlapping partial trips of multiple drivers.

2.1 User Experience
A user can either act as driver or passenger. In this chapter, the tasks that
are necessary for the matching algorithm will be explained separately.

2.1.1 Offering a trip

If a driver wants to offer a trip, she/he needs to enter a start location, final
destination, departure and estimated arrival date and time, an overall price
for his trip and the number of seats he want’s to offer.

The locations inputs are auto-completed by making use of Google Map’s
Directions service 1. If both were entered, Google’s route service is used
to get the trip’s path as a list of coordinates. This list of coordinates can
be large, e.g. 226 on the default response for "Berlin -> Bonn" (596 km).
Looking at the ratio of coordinates and trip distance (226/596), you can
approximate that the DirectionsService returns one coordinate per each two
to three kilometers.

Therefore, the client-side javascript was extended to reduce the number
of path coordinates. The approach is shown in figure 2.1 . First, an empty
list is created. Then, it will be iterated through all returned path points. In

1The decision to use GoogleMap was met because of the large capabilities of
the Directions Service. Currently, Google allows 25,000 free map loads per day
([GoogleMapLimits]).

3

2. Current State 4

Figure 2.1: Explanation of strategy to reduce stored waypoints

each iteration, we build two vectors: vector AB between the previous point
and final destination and the vertical vector between the current path point
and AB to determine the distance. If the distance exceeds a specified limit,
it is added to the previously empty list, so the list will grow to only contain
those path points that are far enough from the the previous points. Fig. 2.1
shows the state in the first iteration.

After the map processing, the data is posted to the application backend
and stored in a new trip entity.

2.1.2 Searching for trips

When the passenger looks for trips, she/he first needs to apply the following
filters in a form:

• Filling in her/his start location and final destination.
• Prefered date and time range.
• Price Range in euro.
• Distance in kilometers that she/he’s able to travel by her-/himself in

order to meet the driver on her/his route.
The input of the locations is supported by auto-completion so that

the exact location is matched. The user can fill in a location name like
"Berlin". Google Map’s location service will deliver possible exact matches,
like "Berlin, Germany" which refers to the capital of Germany. Internally,
the coordinates of the matched locations will be attached to the filter form.

Now, the filter values form can be sent to the application’s backend. The
backend processes the query for matching (partial) trips as following:

• Trigger an HQL query 2 to receive trips that take place in the given
date range.

• Delegate to the instance of the NearbyTripsFilter class which will filter
the list of trip entities for those that pass the passenger’s start location
and destination within the prefered distance.

2Hibernate Query Language - special object-oriented syntax of the ORM provider which
will be transformed into a SQL query

2. Current State 5

2.2 Algorithm
The implementation of NearbyTripsFilter realizes a Greedy algorithm.

Therefore, it will be iterated over the given trips list. On each iteration,
the trip’s path coordinates will be checked against those of the passenger’s
start location and destination. For each waypoint, the distance to the pas-
senger’s locations will be calculated using the "haversine" formula to get the
shortest distance by taking care of the earth’s sphere characteristics which
is explained in chapter 3. If the formula returns a value that is less than
or equal to the passenger’s configured distance, the waypoints loop will be
exited and the trip is added to the list of matching trips.

2.3 Complexity
The problem size of the described Greedy algorithm is given by two inputs:
the number of trips (N) returned in step 1 and the sum of the numbers of
waypoints per trip (K).

Θ(𝑁) = 𝑁 * 𝐾

The notations show that the complexity grows if either the number of
trips from step 1 or the sum of waypoints increase. In theory, the waypoints
sum has the highest risk to grow. This is due to the nature of long-distance
trips. For a trip from Berlin to Bonn, 134 waypoints will be saved for exam-
ple.

2.4 Architecture
The car sharing application follows the multi-tier approach of JEE - plat-
forms. As shown in figure 2.2, the logic to recieve the trip and passenger’s
start and destination coordinates is nested in the Web Browser on the Client
tier. Here, a javascript querying Google Maps Direction Service is triggered
and the results are given to the backend application on the Web Tier. The
backend application delegates to the storage or query services nested on
the Business Layer. So the business layer contains the application’s most
important algorithm: finding matching trips for a passenger’s query.

For future extensions, this core logic can easily be reused. You could
think of a mobile app that communicates to a REST API on the Web Tier
layer which would also delegate to the same business layer as the existing
web application for example.

2. Current State 6

Figure 2.2: car sharing application architecture, based on J2EE 7 tutorial
multi-tiers explanation [JEE7Tutorial], p. 1-8

2.5 Goals of this work
The existing capabilities - finding single offered trips - should be extended by
also finding crossing partial trips. Therefore, the introduced algorithms will
be used as foundation. As seen in the previous chapter, the extensions will
mostly take place in the business tier where the main algorithm is nested.

With this work, the solution should be found by comparing different
possible algorithms and check whether they are applicable in the car sharing
application.

Chapter 3

Fundamentals

To understand the concept of extending the existing application it is neces-
sary to have basic knowledge about the underlying JEE platform and basic
graph theory. In this chapter, current approaches to find optimal routes that
are based on partial overlapping are sketched.

3.1 Haversine formula
In the application the algorithms make use of the haversine formula to calcu-
late the distance of two points considering the earth’s sphere characteristics.
If the euclidian distance would have been used by thinking of the earth of
a not curved surface, it would have been necessary to use a projection algo-
rithm to get the curved coordinates and therefore the real distance. So the
haversine formula allows a performant solution for this problem. In com-
puter science, it was used to extend the standard formula given in spherical
astronomy books to get the angular separation of one star from another to
be more satisfactory for very close objects (see. [Haversine]). It is defined
as:

hav s = hav (Δ𝛿)+𝑐𝑜𝑠𝛿1 cos 𝛿2 hav (Δ𝑎)

The haversine formula was first introduced around 1800. The underlying
haversine function itself appeared earlier (see [Smith], p. 618). The name
(half versus sinus) is coming from the Latin "sinus versus". The function
itself is defined as:

hav = sin2 𝛿
2 = 1−𝑐𝑜𝑠(𝛿)

2

This formula is applied in an object-oriented style in our application can

7

3. Fundamentals 8

be viewed in our public source code 1.

3.2 Java enterprise platform
As introduced in chapter 2 the application is based on JEE platform 7. The
decision was met to have an optimized extensible and scalable architecture.
The Java EE container shown in fig. 2.2 allows to store the main route find-
ing algorithm in a single reusable component. The component should be used
via well-defined interfaces. Therefore, this kind of architecture allows to dis-
tribute the algorithm over different systems when scaling gets important due
to a growth of users. The main route finding algorithm class was defined as
so called Enterprise Java Bean (EJB) that can be used by other components
such as the Java Server Faces (JSF) web application via the Java Naming
and Directory Interface (JNDI) lookup service (see [JEE7Tutorial], p. 1-
9). In each layer of the application, single containers manage the execution:

• Web Container: manages the web page itself - we are using JSF to
deliver the HTML, Javascript and CSS to the web browser client.

• EJB Container: manages our EJBs and therefore the business logic.

There isn’t any client application container that is managed by the JEE
platform. The car-sharing application is browser-based, so that the commu-
nication between both is based on HTTP.

JEE includes the Java Persistence API (JPA) that is primarily used to
decouple the relational database and the object-oriented software. Imple-
mentations of JPA help to prevent this kind of paradigm mismatch (see
[Hibernate], p. 1). Therefore it defines object relational mapping (ORM)
metadata (see [JEE7Tutorial], p. 1-17).

Beside the JavaMail API and Java API for JSON processing the pre-
sented technologies are the most important for the Car-Sharing application.
In the following chapters the concrete JPA implementation and JSF will be
explained.

3.3 Hibernate
The application makes use of Hibernate which is an implementation of the
JPA specification. The Car Sharing application doesn’t need any logic in
the database layer via stored procedures for example. As stated above, it is

1https://github.com/sasfeld/JumpUpReloaded/blob/master/src/main/
java/de/htw/fb4/imi/jumpup/util/math/CoordinateUtil.java

3. Fundamentals 9

contained in the EJB layer of the application. Hibernate was designed for
applications like this ([Hibernate], p. 1).

The EJB layer also contains the entity classes that are annotated by
JPA provided tags. Hibernate processes those annotations and transforms
instances to the underlying SQL database schema itself and reverse. To query
entities as during the trips request the application contains Hibernate Query
Language (HQL) queries. The example of finding matching trips shown in
3.1 for a passengers contains criteria like the price and date ranges.

Listing 3.1: Criteria HQL Query to find trips
1 @NamedQuery(name = Trip.NAME_CRITERIA_QUERY, query = "SELECT t FROM Trip

t WHERE"
2 + "t.cancelationDateTime IS NULL"
3 + " AND (t.driver != :passenger)"
4 + " AND (:dateFrom IS NULL OR t.startDateTime >= :dateFrom)"
5 + " AND (:dateTo IS NULL OR t.endDateTime <= :dateTo)"
6 + " AND (:priceFrom IS NULL OR t.price >= :priceFrom)"
7 + " AND (:priceTo IS NULL OR t.price <= :priceTo)")

Further extensions of the application like finding overlapping partial trips
should take place in the EJB layer to keep the flexibility that is offered by
the loose coupling of the EJB and storage layers.

3.4 JSF
The web layer consists of a Java Server Faces (JSF) implementation which is
a framework for the creation of graphical user interfaces for web applications.

3.4.1 Facelets

It consists of so-called Facelets which are view scripts written in an XHTML
syntax. Therefore, JSF provides different tag libraries to add view compo-
nents via XHTML annotations (see [JEE7Tutorial], p. 8-2). The car shar-
ing application contains custom components such as an e-Mail address field
that comes in with additional validation declarations. JSF will process the
special XHTML and produce pure HTML 5 before sending the response to
the browser. The technology is part of the Java Web Application technolo-
gies as shown in figure 3.1 and can be used in parallel to Java Server Pages
and Java Servlets. Itself is based on servlets technology.

JSF enforces to make use of the Model View Control (MVC) Pattern
by clearly separating facelets and the Java Bean layer which are addressed
using the Expression Language (EL). In the car sharing application, facelets
are referencing Java Beans on the Web Tier which are mostly controller
classes. The models are nested in the EJB business tier.

3. Fundamentals 10

Figure 3.1: JSF nesting in Java Web Application Technologies
[JEE7Tutorial], p. 7-3

3.4.2 Request-Response Lifecycle

Java Server Faces provides a lifecycle specification with the Execute and
Render main phases ([JEE7Tutorial], p. 7-13). In the execution phase,
each view input element will be validated for example. On validation fail-
ures the processing of the input field will be terminated which is good in
terms of security. JSF simplifies the HTTP Request parameter handling, val-
idation and processing workflow and manages the component states (e.g. in
a session). The car sharing application contains validation classes in the Web
Tier for each custom view element, for example. Those simply implement a
JSF interface.

Figure 3.2 shows the desribed request-response lifecycle. If any validas-
tion fails, the model values in the Java Bean layer wouldn’t be updated at
all. Processing would stop before the application respectivly its controller
classes in the web tier are invoked. Then, an error message would be shown.
This strict process protects the car sharing application from invalid inputs
like injection attacks.

Further extension of the car sharing application therefore need to fit the
JSF lifecycle and MVC concept so that the security, maintainability and
flexibility of the web tier can be kept.

3.5 Basic graph theory
Because the problem of this work can be typically found within the graph
theory, basic concepts need to be sketched shortly.

3.5.1 Definition

A graph in the car sharing application consists of offered trips which are
paths in the overall directed graph of waypoints (coordinates) and edges
between them. Formally, a graph is described by (see [Krumke], p. 7):

3. Fundamentals 11

Figure 3.2: JSF Request-Response Lifecycle [JEE7Tutorial], p. 7-14

g = (V, R, 𝛼, 𝜔)
V is a set of vertices
R is a set of edges
𝛼 : 𝑅 → 𝑉 (beginning vertex of an edge)
𝜔 : 𝑅 → 𝑉 (ending vertix of an edge)
Way in G: set of (v0, r1, v1,...., r𝑘, v𝑘)

3. Fundamentals 12

3.5.2 Storage of graphs

As introduced in chapter 2, trips are currently stored unstructured as list of
waypoints described by coordinates. To fulfill the task to find overlapping
partial trips using graph algorithms, the data needs to be structured in order
to describe a graph formally.

One possibility to store graph on the application level is to use a lightweight
array structure based on the adjacency matrix. Formally, the matrix is built
by (compare [Krumke], p. 19):

a𝑖𝑗 = |r ∈ 𝑅 : 𝛼(𝑟) = 𝑣𝑖 and 𝜔(𝑟) = 𝑣𝑗 |

Figure 3.3: Example of a directed graph

Following this definition, the graph in figure 3.3 could be stored as the
following matrix:

𝐴(𝐺) =

⎡⎣0 1 1
0 0 2
0 0 0

⎤⎦
Rows and columns in the matrix are representing the vertices beginning

from one. The values in the cells show the number of connecting edges.

Listing 3.2: Storage of an adjacency matrix in Java
1 int[][] adjacencyMatrix = {
2 {0, 1, 1}, // connections from vertex 1
3 {0, 0, 2}, // connections from vertex 2
4 {0, 0, 0} // connections from vertex 3
5 };

In Java, this matrix should be saved as the two-dimensional array shown
in 3.2. But a more common approach is to make use of an adjacency list
([Krumke], p. 21) which consists of sub linked lists indicating connected
vertices for each single vertex. An example is shown in fig. 3.4

3. Fundamentals 13

Figure 3.4: Example of the adjacency list

Therefore, the application should make use of the array adjacency list
structure to process the partial overlap searching algorithm.

3.6 Shortest Path
The extension of the car sharing application opens a shortest path finding
problem: now, not only matching trips that connect directly a passengers
start and destination location need to be found, but also connecting trips
in a graph structure. Therefore, we need to find the shortest path in terms
of duration and distance.This kind of path problem is a Single Pair Short-
est Path Problem (SPP) which can be differentiated from Single Source
Path problems (SSP) and All Pairs Shortest Path problems (APSP) (see
[Krumke], p. 167).

3.6.1 Comparison

According to [Zhan], the following shortest path algorithms run fastest on
real road networks:

• Pallottino’s Graph Growth Algorithms with two queues
• Dijkstra Algorithm with approximate bucket
• Dijkstra algorithm with double buckets
During the study of Zhan and Noon, it was stated that Pallottino’s graph

growth algorithm was the best for solving Single Source Path problems,
while Dijkstra offers "advantages" for Single Pair Shortest Path problems
(see [Zhan], p. 74). They explained that Dijkstra could be terminated
when the destination node is reached.

The Dijkstra algorithm should be used due to the optimal runtime of
0(𝑛2). It will be explained in the following chapter.

3. Fundamentals 14

3.6.2 Dijkstra

The Dijkstra algorithm ([Dijkstra]) solves the Single Source Path problem.
The input is a graph G in adjacency list representation, a weight function
c and a start vertex s. The algorithm works by making use of a priority
queue, distances markers for each vertex and a list of visited vertices. In
each iteration, the first node of the priority queue (with the minimum cost
marked) will be extracted. Following the so-called "relaxation" principle, all
successor vertices from the current node on will be marked with the costs
of the current vertex plus the costs of the edge if the current costs of the
successor are larger. The algorithm terminates if the priority queue is empty
(so all nodes were visited). The distance markers on each vertex show the
shortest path from the start vertex s.

The car sharing application should modify the algorithm to build a pre-
decessor list back from the passenger’s destination to the start vertex s so
that a found route can be traced.

3.7 K-Shortest Path
The target of this work is to find overlaps between different paths (trips
offered by drivers). It makes sense to find more than one solution. Alternative
shortest paths can be found by using the k-shortest Path algorithm.

[Yen] proposed a method to find K shortest loopless paths in a network
from an origin to a destination node. Compared to other shortest path algo-
rithms it allows to find alternative routes which would improve the search
in the car sharing application. The algorithm mostly works by the random
deletion of nodes on the shortest path between two nodes (see [Lim], p. 1).

3.7.1 Partial overlap proposal

In [Zhou], a k-shortest path algorithm was proposed to the problem of a
complex transit network software - a Geographic Information System (GIS).
People who want to use a transit system in a metropolis often have the prob-
lem to find non-recurrent trips from an origin to a destination that contains
different combinations of means of traffic. Think of getting around in Berlin:
people can use the tram, bus, S-Bahn, subway, regional trains, bicycles or
a car. Here, transit advanced traveler information systems (TATIS) could
help people to find around more efficiently. They find connections between
different means of traffic by minimizing the "cost of the whole path" ([Zhou
], p. 1).

The stated advantage of the k-shortest path approach is that it "can
provide several alternative paths" ([Zhou], p. 2) and therefore fit the nature
of a human’s need: offering alternative solutions and not only restricting to
one shortest path.

3. Fundamentals 15

In the study, a new method called "partial overlap" was developed. First,
a road layer and a transit network graph were created. Then they were
combined to a new topological structure by finding nearest intersection nodes
on the road layer for each public transport stop in the transit layer. Partial
overlapping here was meant to be the overlapping between each path and
the travel costs (see [Zhou], p. 5).

This "partial overlap" approach is interesting for the finding overlapping
partial trips in the Car-Sharing application because it takes care of the
travel costs during the connection. A passenger will have to switch cars
when an intersection between different trips was found. The costs here would
be connecting times and distance between the intersection locations, for
example.

3.7.2 Path overlap in road network

The study of [Lim] was focused on applying the path overlap to real road
networks and therefore interesting for the extension of the car sharing ap-
plication.

The authors stated the weakness of too much heterogeneity between
the alternative paths coming from the k-shortest path algorithm. Therefore
they proposed an algorithm to build a new path by evaluating the degree of
overlapping in terms of travel costs ([Lim], p. 2). This could help to offer
optimal alternatives for matched overlapping partial trips in the car shar-
ing application. For example, the result list could deliver more widespread
connecting times and distances for intersections.

Another interesting outcome is the support of so-called "penalized turns"
([Lim], p. 3). In real road-networks, those can be restricted turnings for
example. Penalized turns could be applied in the car sharing application
to restrict intersections in trips: the driver could not want to stop at some
location where the passenger needs to change the trip, for example.

3.8 Summary
The researched algorithms should be used to extend the car sharing applica-
tion by the overlapping partial trips functionality. The extension must follow
the current application structure and fit into the JEE architecture.

Chapter 4

Concept

The researched algorithms are the foundation for the concept of the exten-
sion in the car sharing application.

4.1 Requirements
The application should be extended by finding overlapping partial trips. This
allows the passenger to find trips that are crossing each other. If a passenger
wants to get from Berlin to Cologne for example and there are separate trips
from Berlin to Hannover and Hannover to Cologne, she/he will be able to
book both of them. In a first step of the extension, the existing HQL query
to get all trips that take place within the passenger’s prefered date range
should be used. In the future, this query might be important to increase the
application’s performance once multiple partial trips are allowed because the
number of selected trips is a dominating factor for the algorithm runtimes.

4.1.1 Functional requirements

The following requirements must be fulfilled.
• The passenger is able to find multiple (partial) crossing trips that bring

her/him to his destination.
• The found multiple trips should be the shortest connection in terms

of distance and duration.
The following features should be available:

• The passenger should be offered alternative routes across multiple
(partial) trips so she/he can decide by his / her own how to get to
the destination.

• The found multiple (partial) trips should be displayed in the existing
map in the browser.

16

4. Concept 17

4.1.2 Technical requirements

Technically, the following limitations are important:
• The extension fits into the JEE architecture by encapsulating the ex-

tensive business logic in the EJB layer, defining controllers and JSF
views in the web tier.

• The solution makes use of a graph structure, in the best case by making
use of an adjacency list. Therefore, a transformation of the currently
unstructured data is necessary. The graph structure represents all trips
that take place in the passenger’s prefered date range.

• The Dijkstra algorithm is used to find the shortest path across multiple
(partial) trips so that a good runtime is gained.

• K-Shortest path algorithms can be used to offer alternative shortest
paths.

• The used shortest path algorithms should be implemented against well
defined API methods so that they are exchangeable.

4.2 Technical process
The stated requirements are pictured within the process shown in figure 4.1.
The current algorithm in the application’s EJB layer to find direct trips
respectively trips that are passing the passenger’s origin and destination
will be left untouched. If no direct trip was found, the new algorithm to
find overlapping partial trips will get active. Then, all found trips will be
transformed into a graph structure by making use of an adjacency list. The
adjacency list will be the input for the shortest path algorithm which will
be an Dijkstra implementation first.

4.2.1 Extension in existing trip query service

The current trip query service method to find matching trips for given cri-
teria needs to be extended. Figure 4.2 shows the entities Trip, Booking and
User. Those can be left untouched, so the Hibernate persistence doesn’t need
to be extended.

Currently, the service returns an instance of TripQueryResult which con-
sists of multiple SingleTripQueryResult instances. The frontend relies on this
data structure so it should still be returned if direct trips were found so that
no adjustments in the frontend javascript are required for the existing use
case.

If no direct trip was found, the service should return a specialized Trip-
QueryResult which structures found overlapping partial trips in another
way. This specialized instance should consist of an instance of SingleOver-
lappingPartialTripsQueryResult or similar which references the overlapping

4. Concept 18

Figure 4.1: Data flow of extended find trips process in the Trip query service
(EJB-Layer)

trips and contains the intersection data such as longitude, latitude and op-
tionally connecting time.

4.2.2 Graph structure

The current waypoint data of trips is not structured. As shown in 4.2, the
path of a Trip entity is stored in a property overviewPath of type String.
This is a comma-separated list of latitude, longitude pairs. Each pair can be
seen as a node in the overall graph of trips that pass the passenger’s origin
or destination in his or her desired travel date range.

The transformation into the graph structure reveals one problem: the
overviewPath coordinates are very fine, the probability that a coordinate is
hit by more than one trip is therefore low. There might be two trips which

4. Concept 19

Figure 4.2: UML of basic models that are important for the extension

visually cross somewhere in Hannover, but the stored coordinates might
differ even if the distance between them is less than 50 metres, for example.

To solve this problem, the coordinates should have some kind of toler-
ance. One solution is to round a coordinate down to a certain amount of
digits after the comma before it is stored as graph node in the adjacency

4. Concept 20

list. Doing this, near coordinates would be rounded down to the same value
and open up an intersection between two or more trips.

The prepared coordinates can be stored by making use of the existing
Coordinates class in the adjacency list. Coordinate instances in the graph
should be unique: during the creation of the graph, a new instance of coor-
dinate should never be created if there’s already an instance with the same
latitude and longitude values. Otherwise, the shortest path algorithm won’t
work because it relies on the referential use of vertices.

4.2.3 Frontend extensions

There are no changes required if direct trips were returned from the Trip
query service. If overlapping partial trips were found, the given JSON re-
sponse handling needs to be extended. Therefore, the model SingleTripQuery
result needs to be replaced by a polymorphistic structure of possible results
(e.g. direct trips versus overlapping partial ones). The partial trips should
be shown on the map and in the existing result list that is presented to the
user. The intersection of the the overlapping trips should be visible to the
passenger.

4.3 Summary
Given the must and should have criteria, an UML structure with clear points
of extension and a basic concept for the graph transformation, a first solution
can be implemented.

Chapter 5

Implementation

The implementation follows the concept introduced in 4. In this chapter, the
extensions that were required to offer multiple partial trips are explained.

5.1 Graph implementation

Figure 5.1: UML of the implemented Graph structure

21

5. Implementation 22

The waypoint data was structured into a Graph model shown in figure
5.1. Therefore, the following representing Java classes were introduced:

• Graph: a Graph consists of Vertex and Edge instances. It basically
capsulates the vertex and edge structure by making use of an adjacency
list. It therefore allows fast access to incident edges of vertices by
shortest path algorithms, for example. The graph adds a constraint
for the uniqueness of vertices in the graph (e.g. same IDs). It will
throw an exception if a vertex is already contained.

• Vector: a Vector is bound to a Coordinates instance which were al-
ready used before the extension. The method getId() will trigger the
calculation of a double value that acts as unique identifier. The cal-
culation helps to solve the connecting trips probability problem. It is
explained in chapter 5.4.

• Edge: an Edge connects two Vertex instances with a specific weight.
The weight is a double value so the shortest path algorithms can be
more precise. Usually, the weight is the distance between the two ver-
tices in kilometers.

• Path: As per definition, a path is a subset of vertices of a graph.
Therefore, a Path implementation consists of a sequence of Vertex
elements and also offers convenience methods that fit the current car
sharing application, e.g. to get all the Trip instances that are contained
within a path.

Those classes were fit to work with the current modelling, e.g. Vertex
instances basically are bound to a Coordinates object. The transformation
into this graph structure is explained in the next chapters.

5.2 Selecting trips
The existing HQL to select the trips was left untouched. It was introduced
in chapter 3 by listing 3.1. Hibernate will return a list of Trip instances as
result. Then, the existing algorithm to find direct trips will be triggered. If
no results were found, the graph structure will be built and the shortest path
algorithm will be triggered to find overlapping partial trips as explained in
the following chapters.

5.3 Structuring process
An instance of the class GraphBuilder (figure 5.1) is responsible for struc-
turing the waypoint data into the introduced graph implementaton. The
public method simply takes a Trip instance and returns the builded graph
instance. Therefore, it works as following:

• Create a vertex for the start point of the trip.

5. Implementation 23

• Iterate over the trips’ waypoints (instances of Coordinate) in the order
of the geographical route. Create Vertex instances for each and connect
them sequentially by creating Edge instances. Calculate the weight
by making use of the existing helper method calculateDistanceBe-
tween(Coordinates coordinates1, Coordinates coordinates2) using the
Haversine formula.

• Create a vertex for the destination of the trip. Also create an edge
between the last created vertex and the new destination by also cal-
culating the distance using Haversine.

• Keep uniqueness of vertices: If a vertex needs to be added which has an
ID that already exists in the graph structure, do not add a new one but
use the existing one. This means that the vertex acts as intersection
point between overlapping trips.

• Store referring trips on each vertex: it is very important to keep a
reference between trip and vertex, so for each vertex a reference to the
trip will be added into the set of references. This allows to identify
intersection waypoints (the overlaps) between the trips.

Now, a graph structure was created that will be used by shortest path
algorithms.

5.4 Intersection probability
The calculation of the Vertex ID solves the problem of the very fine co-
ordinates that are stored on trip instances as described in chapter 4.2.2 by
rounding the coordinates to 4 digits after the comma. The rounded off values
are then sumed up to an ID. This common procedure for different waypoints
allows to control the probability of finding connecting trips.

The calculation is shown in listing 5.1.

Listing 5.1: Calculation of Vertex ID
1 /∗∗
2 ∗ Calculate the vertex identity .
3 ∗
4 ∗ Therefore, floor the coordinates to a special number of digits which can be

set within TOLERANCE_FACTOR constant.
5 ∗/
6 private void calculateId()
7 {
8 // floor the coordinate values to increase the intersection probability
9 double latitude = this.coordinates.getLatitudeDegrees();

10 double longitude = this.coordinates.getLongitudeDegrees();
11
12 double toleranceLatitude = Math.round(latitude * TOLERANCE_FACTOR) /

TOLERANCE_FACTOR;
13 double toleranceLongitude = Math.round(longitude * TOLERANCE_FACTOR)

/ TOLERANCE_FACTOR;

5. Implementation 24

14
15 this.id = toleranceLatitude + toleranceLongitude;
16 }

The probability of connecting trips can be adjusted by setting the con-
stant TOLERANCE_FACTOR. It determines the number of digits behind
the comma that will be rounded if it is a set as decimal power (10𝑛 while n
is the number of digits behind the comma). During the implementation, n
= 1000 (so four digits after comma) was detected as an applicable setting.
This setting will connect waypoints of different trips that are within a ra-
dius of approximative seven kilometers which can be proved by calculating
the distance between the following coordinates using Haversine as shown in
listing 5.2.

Listing 5.2: Test method to find a good setting for the intersection proba-
bility

1 Coordinates one = CoordinateUtil.newCoordinatesBy("55.11111,55.11111");
2 Coordinates two = CoordinateUtil.newCoordinatesBy("55.11111,55.22222");
3
4 System.out.println(CoordinateUtil.calculateDistanceBetween(one, two));

The result in listing 5.2.is about seven kilometers. So rounding to four
digits results in approximative seven kilometers intersection vertices.

5.5 Changes in modelling
Because Hibernate is used as ORM mapping tool, no changes on the database
scheme level itself are required. The property types are modified in the en-
tity classes itself. After a significant change, the Hibernate configuration file
must be adjusted so that the new scheme will be created. Since the intro-
duction of a shortest path algorithm, the latitude and longitude data types
were changed from float to double to be more precise in terms of the inter-
section probability to work correctly. Because there’s no live environment
available, no migration script on database level was required to change the
column types since Hibernate can’t handle this.

5.6 Shortest Path strategy
The shortest path solution should be easily exchangeable and extendable
(functional requirement). Therefore, it was made use of the StrategyPattern
to solve the problem of finding the shortest path. As shown in figure 5.2,
the interface Routable defines the method findShortestPath that each short-
est path problem in the car sharing application needs to implement. Per
definition, each implementation should solve the Single Pair Shortest Path
problem by evaluating both the origin and destination Vertex parameters.

5. Implementation 25

Figure 5.2: UML of the Shortest Path strategy

5.7 Dijkstra implementation
The implementation DijkstraSinglePair basically implements Dijkstra by
making use of the new Graph classes. It is based on solving the Single Source
Path Problem, so internally the algorithm will start at the given origin and
find all shortest paths to all other vertices. At the end it will be checked
whether the destination vertex is contained in the internal predecessor list
to ensure that the Single Pair problem is solved. If not, a PathNotFoundEx-
ception will be thrown. The class contains the following methods:

• prepare(Graph graph): Clear the distances and predecessor maps. The
distance map makes it possible to get the marked distance of a vertex.
The predecessor map is important for building the Path instance: it is
used to build the sequence of vertices from the origin to the destination
crossing overlapping trips after all shortest paths were determined.

• init(Vertex start): Initialize Dijkstra by setting all distances markers
unmarked.

• checkForNegativeWeights(): Dijkstra can only solve the shortest path
problem for graphs with only positive weights. So this method will

5. Implementation 26

throw an exception if a negative weight was found.
• executeDijkstra(): This method works through the priority queue of

vertices as long as a vertex with minimum marked distance is con-
tained. It will then call the relax() method for all incident edges of the
extracted vertex.

• relax(Vertex vertexA, Vertex vertexB, double weight, HashMap<Vertex,
Double> distances, HashMap<Vertex, Vertex> predecessors): This met-
hod is the basis of Dijkstra and many other shortest path algorithms.
It checks if the the distance to the target vertexB (distance to Ver-
tex A + weight of edge) is less than the currently marked distance. If
so, the new distance will be marked using the distance map and the
predecessor of vertexB will be set to vertexA which means that a new
shortest path was found.

• buildPathFromPredecessorMap(Vertex origin, Vertex destination): This
method is called after executeDijkstra terminates. It will check whether
the destination is contained in the predecessor map and throw a Path-
NotFoundException if not. Otherwise, an instance of Path will be built
by reversing the order of predecessor vertices, so starting from the ori-
gin to the destination vertex.

5.8 Integration into current service

Figure 5.3: UML of the refactored AJAX Query Result models

As stated in chapter 4.2.3, the query result models needed to be replaced
by a polymorphistic approach to separate different types of Trip query re-
sults, while the existing functionality of finding direct trips should still be

5. Implementation 27

working. So the decision was met to extend the existing class TripQueryRe-
sults by a new class OverlappingPartialTripQueryResults and additionally
by TripQueryNoResults to fulfill the process shown in figure 4.1. Figure 5.3
shows the result. An outcome of this solution is that the rendering of found
overlapping partial trips in the frontend map immediatly works since the
basic JSON data structure coming from the backend didn’t change. On the
other hand, it allows to add extended behaviour in the frontend such as
exposing intersection vertices.

To work with the new structure of query results, the EJB service method
to query trips was adjusted as shown in listing 5.3. The method findOverlap-
pingPartialTrips() realizes the aimed workflow: first, it triggers the creation
of the graph structure and then the Dijkstra Shortest Pair Path Problem.

Listing 5.3: Extended workflow in searchForTrips()
1 public TripQueryResults searchForTrips(TripSearchCriteria

tripSearchModel)
2 {
3 // exclude passenger’s own trip first
4 tripSearchModel.setPassenger(this.getCurrentlyLoggedInUser());
5 List<Trip> matchedTrips = this.tripDao.getByCriteria(tripSearchModel)
6
7 // first, filter for direct trips
8 List<Trip> filteredTrips = this.triggerDirectTripsFilteringChain(

tripSearchModel, matchedTrips);
9

10 if (0 != filteredTrips.size()) {
11 // direct trips were found
12 return this.toQueryResultList(filteredTrips, tripSearchModel);
13 }
14
15 // no direct trips were found, so start to find overlapping partial trips
16 try {
17 Path overlappingPartialTrips = this.findOverlappingPartialTrips(

tripSearchModel, matchedTrips);
18 return this.toQueryResultList(overlappingPartialTrips,

tripSearchModel);
19 } catch (PathNotFoundException e) {
20 // no path found at all
21 return this.getNoTripsResult();
22 }
23 }

5.9 Frontend adjustments
Since the result JSON of the backend was extended and not basically changed,
overlapping partial trips were immediately displayed correctly in the map. It
was only changed to evaluate the newly introduced type in TripQueryResult
so that specific behaviour can be implemented. A toast message is shown

5. Implementation 28

when a overlapping partial trip result was found instead of a direct trip for
example.

5.10 Review
The extension of the car sharing application to also find overlapping partial
trips was successful. Now, a multiple trip result will be shown if no direct
trip was found for a passenger’s search criteria. The new result handling is
ready for specific extensions and changes. The results are presented in the
next chapter, which also contains an analysis of runtime and complexity.

Chapter 6

Analysis

The car sharing application was extended to also find overlapping partial
trips. In this chapter, the new feature will be presented visually. On the
other hand, it will be reviewed in terms of runtime and complexity.

6.1 Results
As shown in figure 6.1 and 6.2, the car sharing application will now present
a maximum of one overlapping path that crosses partial overlapping trips
offered by different drivers. The basic interface - a central map element
showing the query results if a passengers looks for trips - didn’t change at
all. If an overlapping trip path was found, the passenger is able to book
the partial trips between the intersection points. In figure 6.1, she/he would
book a trip from Berlin to Hannover, followed by a trip from Hannover to
Cologne. The trips don’t need to end in Hannover or Cologne, the same
result would also appear if the trips were just passing both cities.

6.2 Usability weaknesses
The new feature comes with usability weaknesses that should be solved in
a separate conceptualization:

Exponation of intersections: Intersection locations should be clearly
marked. The passenger should be shown a quick-link for example, so she/he
is able to identify the overlapping locations of crossing trips quickly.
Travel and intersection times: The current times presented to the pas-
senger are times of whole offered trips. To plan the intersection it is necessary
to offer travel times for the partial trips (e.g. from Berlin to Hannover in
figure 6.1) only including departure and arrival times.

29

6. Analysis 30

Figure 6.1: Found overlapping trip from Berlin to Cologne with intersection
in Hannover - screen 1

Trip filters: The trip HQL queries should be optimized to also evaluate the
intersection times so that not realistic paths are filtered out before the short-
est path algorithm is executed. For example: The connecting trip from Han-
nover to Cologne in 6.1 could take place anywhere in between 08/19/2015
and 08/28/2015. The trip results are not filtered to take place on a single
day.
Offering alternatives: Only one path will be shown currently. As discussed
in chapter 3, "K shortest path algorithms" could solve the problem of offering
alternatives, for example. In order to get the frontend working, it would be
necessary to extend the query result data structure. So instead of returning
a list of Trip entities that represent crossing ones on the found shortest path,
a list of alternative Path instances should be returned.

For each of the weaknesses, concepts should be found by making use of

6. Analysis 31

Figure 6.2: Found overlapping trip from Berlin to Cologne with intersection
in Hannover - screen 2

usability labs.

6.3 Runtime
The runtime was measured on the environment shown in table 6.1.

Table 6.1: Measurement environment

Processor Number of cores Rate (GHZ) Virtual Memory (GB)
Intel Core I5-3230 4 2.6 12

6. Analysis 32

To measure the runtime, different graph sizes were created. Therefore,
trips were created for different users, of different length and number of way-
points. The measurement results are shown in the table below.

Table 6.2: Measurements

Number vertices (𝑁𝑉) Number edges (𝑁𝐸) Graph Size (𝑁𝑉 + 𝑁𝐸) Runtime (ms)
129 135 264 47
490 523 1013 52
1000 1054 2054 63

6.4 Complexity

Figure 6.3: Measured runtime as Graph

The results of table 6.2 are visualised in figure 6.3. The problem size is
given by the number of vertices plus the number of edges. The curve basically
shows a logarithmic growth of the runtime compared to this problem size as
it was expected by Dijkstra. Since the problem size is mostly a direct result
of the HQL query to filter trips for a special date range, the runtime might
be smaller for smaller dateranges.

Chapter 7

Conclusion

As shown in the previous chapter, an applicable extension was implemented.
It will be reviewed here. However, the solution is not optimal in terms of
usability. Therefore, this chapter also gives an outlook of future extension.

7.1 Review
The shortest path algorithms runs in an acceptable average runtime. The
algorithm itself could be optimized by making use of parallel processors if
the car sharing application needs to be scaled up in the future. So the chosen
algorithm fits perfectly into the existing car sharing application.

The memory usage is quite low which is mostly due to the optimal JEE
architecture that was used. During processing, the graph structure will be
processed in the EJB server’s RAM. The graph structure itself is as compact
as possible by making use of adjacency lists and referential dependencies.

The extensions were made by fitting into the current application architec-
ture. The EJB layer allows to reuse the shortest path algorithm everywhere
in the application. You could think of introducing a REST service nested
in the web layer for example which delegates to the shortest path business
logic.

Since design patterns such as the Strategy Pattern and stable models
(such as Graph, Vertex, Edge and Path) were used to solve the new task,
shortest path solutions can easily be added or extended. The structure is
also easily maintainable. The usage of Dijkstra as shortest path algorithm
in combination with having a Graph structuring preprocess allows to nest
extensions such as offering alternative shortest paths in the graph creation
level itself. Only data models that are returned by the AJAX service need
to be extended for future extensions in the frontend so the newly introduced
shortest path logic itself is stable. A backend developer doesn’t need to
understand the underlying shortest path logic while extending the service.

33

7. Conclusion 34

7.2 Outlook
Based on the new shortest path algorithm, the frontend application should
be extended to offer alternative paths. Therefore, a K-Shortest path ap-
proach could be used to randomly delete vertices in the created graph of Trip
instances (see 5.3) to get multiple (randomely manipulated) graph struc-
tures. The set of shortest path for each of those graph instance would be
the alternative multi-stop trips that could be presented to the passenger.
This wasn’t realized since one of the targets of this work was to evaluate the
general shortest path problem in the car sharing application first before the
extended logic itself is extended.

The frontend should be extended to clearly show intersection locations
and times. Thereby, the backend preprocessing logic should be extended
to find overlapping trips by evaluating departure and arrival times so that
optimal intersections can be found. In general, those extensions should be
done within the Usability Engineering discipline.

On the technical base, a better storage concept for the graph structure
might get necessary to reduce the runtime of the query trips algorithm. You
could think of creating and persisting the Graph structure for a given date
range only once instead of creating it during the query of the passenger. So
the Graph structure could be reused by multiple users, for example.

So by this work, the technical base and a first working draft to offer
multiple partial trips was founded. In the near future, usability optimizations
should be planned and conceptualized.

Lists

Print

[Dijkstra] Dijkstra, E.W.: A note on two problems in connexion with
graphs. Numer. Math., pp. 269–271, 1959.

[Haversine] Sinnott, R.W.: Virtues of the Haversine in: Sky and Tele-
scope, vol. 68, no. 2, 1984, 159

[Krumke] Krumke, Sven Oliver ; Noltemeier, Hartmut: Graphentheo-
retische Konzepte und Algorithmen. Berlin Heidelberg New
York: Springer-Verlag, 2012. -ISBN 978-3-834-82264-2.

[Lim] Yongtaek Lim Hyunmyung Kim: A Shortest Path Algorithm
for Real Road Network Based On Path OverlapJournal of
the Eastern Asia Society for Transportation Studies, Vol. 6,
pp. 1426 - 1438, 2005.

[Smith] Smith, David E.: History of Mathematics, Vol. 2. New York:
Dover Publs, 1925.

[Zhan] Zhan, F. Benjamin: Three Fastest Shortest Path Algorithms
on Real Road Networks: Data Structures and Procedures.
In: Journal of Geographic Information and Decision Analy-
sis, vol. 1, no.1, pp. 70-82, 1997.

[Zhou] Zhou, Sun; Hirokazu, Kato; Yoshitsugu Hayashi: A K-
Shortest algorithm for transit network based on partial over-
lap. Nagoya University, 2005.

[Yen] Yen J.Y.: Finding the K shortest loopless paths in a network,
Management Science, Vol 17, No. 11, 712-716. 1971.

35

7. Conclusion 36

Web

[GoogleMapLimits] https://developers.google.com/maps/usagelimits/. Ac-
cessed: 07/22/2015.

[Hibernate] http://docs.jboss.org/hibernate/orm/4.3/manual/en-
US/html/. Accessed: 08/06/2015.

[JEE7Tutorial] http://docs.oracle.com/javaee/7/JEETT.pdf. Accessed:
07/22/2015.

List of Figures

2.1 Explanation of strategy to reduce stored waypoints 4
2.2 car sharing application architecture, based on J2EE 7 tutorial

multi-tiers explanation [JEE7Tutorial], p. 1-8 6

3.1 JSF nesting in Java Web Application Technologies [JEE7Tutorial
], p. 7-3 . 10

3.2 JSF Request-Response Lifecycle [JEE7Tutorial], p. 7-14 . . 11
3.3 Example of a directed graph 12
3.4 Example of the adjacency list 13

4.1 Data flow of extended find trips process in the Trip query
service (EJB-Layer) . 18

4.2 UML of basic models that are important for the extension . . 19

5.1 UML of the implemented Graph structure 21
5.2 UML of the Shortest Path strategy 25
5.3 UML of the refactored AJAX Query Result models 26

6.1 Found overlapping trip from Berlin to Cologne with intersec-
tion in Hannover - screen 1 30

6.2 Found overlapping trip from Berlin to Cologne with intersec-
tion in Hannover - screen 2 31

6.3 Measured runtime as Graph 32

37

List of Tables

6.1 Measurement environment . 31
6.2 Measurements . 32

38

List of abbreviations

APSP All Pairs Shortest Path Problem - finding shortest paths
between all pairs

EL Expression Language - language that is used in view scripts
to execute Java code

EJB Enterprise Java Bean - mostly classes that contain business
logic

GIS Geographic Information Systems
HQL Hibernate Query Language
J2EE Java 2 Platform Enterprise Edition
JNDI Java Naming and Directory Interface - standard of an object

lookup service
JPA Java Persistence API - standard for entity persistence, e.g.

in relational databases
JSF Java Server Faces- framework for the creation of graphical

user interfaces
MVC Model View Control
ORM Object Relational Mapping - mapping between object-

oriented and relational databases schemes
SPP Single Pair Shortest Path Problem - finding shortest paths

from one point to all other
SSP Single Source Shortest Path Problem - finding shortest paths

from one point to another

39

	Declaration
	Introduction
	Current State
	User Experience
	Offering a trip
	Searching for trips

	Algorithm
	Complexity
	Architecture
	Goals of this work

	Fundamentals
	Haversine formula
	Java enterprise platform
	Hibernate
	JSF
	Facelets
	Request-Response Lifecycle

	Basic graph theory
	Definition
	Storage of graphs

	Shortest Path
	Comparison
	Dijkstra

	K-Shortest Path
	Partial overlap proposal
	Path overlap in road network

	Summary

	Concept
	Requirements
	Functional requirements
	Technical requirements

	Technical process
	Extension in existing trip query service
	Graph structure
	Frontend extensions

	Summary

	Implementation
	Graph implementation
	Selecting trips
	Structuring process
	Intersection probability
	Changes in modelling
	Shortest Path strategy
	Dijkstra implementation
	Integration into current service
	Frontend adjustments
	Review

	Analysis
	Results
	Usability weaknesses
	Runtime
	Complexity

	Conclusion
	Review
	Outlook

	Lists
	List of abbreviations

